Ученые выяснили, что тепло распространяется в графене и других «плоских» материалах в виде тепловых волн

16.03.2015
от

Упрaвлeниe пoтoкaми тeплa являeтся oднoй из дoстaтoчнo бoльшиx прoблeм в сoврeмeннoй элeктрoникe. Для oтвoдa излишкoв тeплa используют радиаторы, вентиляторы, водяное охлаждение и другие, более сложные системы. Но, постоянно увеличивающаяся плотность монтажа радиоэлектронных компонентов и более высокие частоты работы полупроводниковых приборов делают современные чипы настолько горячими, что для их эффективного охлаждения требуются совершенно новые решения.

Графен, форма углерода, кристаллическая решетка которого имеет толщину в один атом, обладает множеством уникальных свойств, что делает этот материал весьма перспективным с точки зрения применения его в электронике будущего. А чрезвычайно высокая удельная теплопроводность графена позволяет рассматривать его в качестве материала для высокоэффективных систем охлаждения нового класса. Исследователи из Швейцарского федерального политехнического университета Лозанны (Swiss Ecole Polytechnique Federale de Lausanne, EPFL) сделали достаточно большой шаг в этом направлении, изучив в доскональности процесс переноса тепла в графене и в других плоских материалах, который в корне отличается от аналогичного процесса в обычных материалах.

Оказывается, что тепловая энергия в графене переносится в виде волн, подобно тому, как звук распространяется в воздухе или в другой среде. «Наши расчеты показывают, что транспорт тепла в графене и в других плоских материалах, в том числе и в тех, которые еще не были изучены, описывается волновыми процессами и соответствующими функциями» — объясняет Андреа Чепеллотти (Andrea Cepellotti), одна из исследователей, — «Это — чрезвычайно важная информация для инженеров, которые получили возможность приспособить дизайн будущих электронных компонентов под особенности свойств двухмерных материалов».

В обычных трехмерных материалах тепло переносится при помощи колебаний атомов в кристаллической решетке. Колеблющиеся атомы объединяются в группы, которые формируют своего рода квазичастицы, именуемые фононами. Фононы могут сталкиваться друг с другом, объединяться, расщепляться и такое их поведение, зависящее от особенностей структуры каждого материала, ограничивает удельную теплопроводность этого материала. Исключением являются температуры, близкие к абсолютному нулю (ниже -200 градусов Цельсия), в этих условиях фононы двигаются упорядоченным образом и тепло переносится абсолютно без потерь.

В двухмерных материалах процесс переноса тепла осуществляется совершенно по-иному. Даже при комнатной температуре тепло передается без рассеивания и потерь, и происходит это из-за волнового явления, получившего название «вторичный звук» (second sound). Явление вторичного звука обуславливает то, что колебания абсолютно всех фононов, даже удаленных на очень большое расстояние, всегда находятся в одной и той же фазе. И даже при взаимодействии отдельных фононов они не подавляют и не рассеивают друг друга.

«Созданные нами математические модели, основанные на базовых физических принципах, демонстрируют, что листы материалов одноатомной толщины ведут себя при комнатной температуре таким образом, как и обычные материалы при сверхнизких температурах» — рассказывает Андреа Чепеллотти, — «И этот необычайный эффект можно и надо использовать при создании систем охлаждения электроники следующих поколений».

Комментарии закрыты.